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R A Y L E I G H -  T A Y L O R  I N S T A B I L I T Y  

T H E  G A L V A N I C  A P P R O X I M A T I O N  

E .  P .  Z i m i n  a n d  O. A.  ] ~ i s m o n t  

IN  M A G N E T O H Y D R O D Y N A M I C S  

The paper  cons ide r s  the stabil i ty of the in te r face  between viscous  conducting media  in the 
p r e s e n c e  of a cu r r en t  and a magnet ic  field for  a magnet ic  Reynolds number  much s m a l l e r  
than unity. In o r d e r  to obtain the d i spers ion  re la t ionsh ips ,  a method is used that  is based  
on the var ia t iona l  pr inciple .  It is shown that  the method indicated y ie lds  good r e su l t s  when 
the magnet ic  field is cons idered .  The dependence of the m a x i m u m  growth ra t e  of the in- 
s tabi l i ty  on the defining p a r a m e t e r s  is p resen ted .  The p rob l em of the s tabi l i ty  of a fluid 
l aye r  s i tuated between solid walls for  l inear ly  d is t r ibuted  conductivity and density is l ike-  
wise solved. The s tabi l iz ing effect  of the Har tmann n u m b e r  on the stabil i ty is  shown. 

A number  of p a p e r s h a v e b e e n  devoted to an invest igat ion of s tabi l i ty  of the Ray le igh-Tay lo r  type in 
magne tohydrodynamics  for  a finite conductivity of the medium (for example ,  [1-4]). In the major i ty  of 
these  pape r s  the s tabi l i ty  of the in te r face  between media  having different  densi t ies  and conductivi t ies  was 
cons idered  in the p r e s e n c e  of grav i ta t iona l  and magnet ic  f ields,  the externa l  magnet ic  field being assumed  
constant  {i.e., in the equi l ibr ium s ta te  the c u r r e n t s  we re  a s sumed  equal to zero) .  

The assumpt ion  of a constant  magnet ic  field, which p e r m i t s  analytic solutions of the  p rob lem to be 
obtained in a n u m b e r  of ca ses ,  excludes  the in te res t ing  case  of the s tabi l i ty  of a cu r r en t  s lab.  In the gen-  
e ra l  case  the p rob l em  of osci l la t ions  in a thin s lab having a finite conductivity of the medium turns  out to 
be ve ry  complex  [4]. 

At the s a m e  t ime,  in a num ber  of c a se s  which a r e  of p rac t i ca l  in te res t  the effect  of the magnet ic  
field introduced by the cu r r en t  flowing in the fluid is r e l a t ive ly  smal l ,  and the p r o b l e m  of the s tabi l i ty  of 
a cu r r en t  s lab in gravi ta t ional  and magnet ic  f ields may be solved in the galvanic approximat ion.  Such an 
approach was initially proposed  in [5], where  d i spers ion  re la t ionships  were  der ived for  bulk and su r face  
waves in the absence  of v i scos i ty  or  an ex te rna l  e lec t r i c  field. 

In [6] the p rob lem of the s tabi l i ty  of the in te r face  between two media  having dif ferent  conduct ivi t ies  
was cons idered  with al lowance for  the v i scos i ty  of the medium and the f in i teness  of the conductivity g r a -  
dient. However ,  that  paper  did not cons ider  the cu r r en t  induced by the pe r tu rbed  motion of the medium,  
although the re  were  not sufficient  grounds for  this omiss ion ;  also,  at the s ame  t ime  the per turba t ions  of 
the e lec t r i c  field intensity were  a s sumed  to be nonvanishing,  which is not c o r r e c t  in the indicated s ta te -  
ment  of the p rob lem.  In [7] an a t tempt  was made at obtaining the galvanic  approximat ion via  the t rans i t ion  
to the l imi t  R m ~ 0 in the final equations for  the per tu rba t ions :  under these  conditions the e lec t r i c  field 
pe r tu rba t ions  automat ica l ly  dropped out, but the magnet ic  f ield pe r tu rba t ions  were  p r e s e r v e d .  

Final ly in [8] only d i spers ion  re la t ionsh ips  der ived for  R m << 1 for  two pa r t i cu l a r  cases  were  given: 
in the absence  of v i scos i ty  of the med ium and for  a smal l  interact ion p a r a m e t e r .  Moreover ,  in that pape r  
the magnet ic  field pe r tu rba t ions  were  cons ide red  anew. The indicated f ac to r s  p rompt  another  considerat ion 
of this p rob lem.  

1. Let  us cons ider  the s tabi l i ty  of an infinite plane s lab of incompress ib le ,  v iscous ,  and conducting 
fluid s i tuated in contact  e i ther  with analogous s labs  c h a r a c t e r i z e d  by o ther  values  of density,  v i scos i ty ,  and 
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conductivity or  with walls. A gravitat ional  field having a constant accelerat ion g(0, 0, - g) is applied n o r -  
mally to the unperturbed boundary.  A uniform magnetic field B is directed along the x axis, and an elec-  
t r ic  field E 0 is directed along the y axis. Here and hence fo r th the  subscr ipt  0 denotes the pa rame te r s  co r -  
responding to the unperturbed equilibrium state. 

The original  sys tem of equations has the following fo rm in the general ly accepted notation: 

ov , p(VV) V - - V p + V ( l x V V ) + ( V t r ) ( V V ) + p g + j •  p-gi- ~- = 

d ivV=O,  j = ~ ( E + V •  r o t E = O ,  d i v j = O  (1.1) 

If diffusion is neglected,  then one may write the equation 

0p 
o-Y + (vv) p = 0 

for  the density.  

Assuming the conductivity and viscos i ty  to depend only on density, we obtain the following equations: 

oz , oF. 
7 (VV) z = O, ~ -  + (VV) ~ = O 

The equil ibrium state for  which V 0 = 0 and the pa rame te r s  P0, % and ~0 are  functions of only one co-  
ordinate z is determined by the equation 

dPo 
d--}- ----- - -  Pog  - -  ~oEoB 

In o rde r  to investigate the stability of such a state,  we introduce smal l  per turbat ions of all the pa r am-  
e ters  in the f o r m f ( z )  exp (ik x + iky + nt). 

After l inearizing the original  sys tem (1.1), we may reduce it to one equation for the perturbat ion of 
the velocity component along the z axis: 

k S n [p,~W t - z D  (poDW)] + + D DW1 

+ ~ D [D~L0 (D ~ + k 2) W] -- ~0 ( D2 -- k2) W -- 2 DIxoDW (1.2) 

- - - -~  (gDpo + =~-~ EoBD~o ) W ---- O 

Here k 2 = kx 2 + ky 2, D ~ d/dz .  

This equation must  be supplemented by the boundary conditions which have the same fo rm as they do 
in the absence of the magnetic field [10], since the presence  of the la t ter  did not increase  the o rder  of the 
equation. Thus, we have either W = DW = 0 on a solid boundary or  at infinity (if an unbounded medium is 
considered),  o r  W = D2W = 0 on a f ree sur face ;  we likewise have continuity of W, DW, p0(D 2 § k2)W and 

2 k~ t (gk~9o 4- kx2EoB~o) W 

on the interface between slabs. 

2. Let us go on to consider  the problem of the stability of the in terface  between two semiinfinite non- 
viscous media  with constant densit ies and conductivit ies in gravitat ional  and magnetic fields. F r o m  Eq. 
(1.2) we easi ly obtain the following resul t  with allowance for  the boundary conditions at infinity 

W(t) = Ce~,Z, W(~) --_ Ce-,Z,z 

where 

k ~Baz (i) ~ . . . . . .  .o + k  ~, R e ( ~ ) > 0 ,  i = l , 2  
npo('~) 
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Using the conditions for  the continuity of the veloci ty and p r e s s u r e  on the in ter face  between media,  
we obtain the following convers ion  relat ionship:  

n ~ F^ ~z) [kx ~s%(~) \"t' [ kx*B~o (~) )'/' eo - -  + k ~) +Po (~) + k  ~ 

= ~'g (f)o(~) - ~o (~)) + k~'~OB (od*) - ~d ~)) 

In the case  when the conductivity of one of the media is equal to zero  (%(t) _ 0) Eq. (2.1) may be r e -  
duced to anequat ion of fourth degree  in n: 

n 4 kx~ B~o(2)p (~) n8 2 [g (po (~) - -  po(t)) - k~ + kxZEoB~o (~)] po (t) n ,  

k 2 Poit) ~ - -  po( ~)~ - -  k (po (1)~ - -  po (~)~) 

k~ [g (po(~) __ 9o(1)) k ~ q~ + p(1)2_ po(~, -~: ~-~ EoB:o (~' j = 0 
(2.2) 

For  p0 (t) = 0 with E 0 = 0 this equation can be reduced  to the equations der ived in [5] in the absence of 
a magnetic f ield component along the z axis.  

Thus,  even a compara t ive ly  s imple problem leads to the necess i ty  of its numer ica l  solution. T h e r e -  
fore ,  approximate methods dese rve  attention which allow a fair ly  simple solution of the problem stated in 
ca ses  which a re  more  genera l  than the one just  cons idered  in the  sense of boundary conditions and the in- 
itial dis tr ibut ion of the unper turbed quantit ies.  

3. As far  back as 1883, in [9] the var ia t ional  pr inciple  was used as the basis  for  proposing an effi- 
cient  method of solving problems of the stabil i ty of an ideal fluid. In [10] this method was genera l ized  for  
tha case  of v iscous  fluids. Below, the method indicated is genera l ized  for  the case  of conducting liquids 
for  R m << 1. 

Let  us re tu rn  to Eq. (1.2). Assume that the eigenvalue n i cor responds  to the eigenfunction W i, while 
the eigenvalue nj co r re sponds  to the eigenfunction Wj. Then, multiplying Eq. (1.2), which has been written 
for  the case  i by WJ and integrat ing within the l imits  of the flow region considered,  we shall have the fol-  
lowing equation af ter  integrating the individual t e r m s  by par ts  and considering the boundary conditions: 

t 

Here  and henceforth the integrat ion method, which coincides with the boundaries  of the flow region,  
is dropped. 

Now, replacing the subscr ip t  i by j and subst raet ing Eq. (3.1) f rom the equation obtained in this 
fashion, we shall have 

Writing (3.1) in the fo rm 

(3.2) 

i (D.2Wi)(D~W~)]d z 

+ nl ! (D~t~~ 
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and p e r f o r m i n g  analogous opera t ions ,  we find 

+ l (O~'v~~ W~Wflz = 0 

Let  us now a s s u m e  that  n i and nj a r e  complex-con juga te  quant i t ies ;  then they will c o r r e s p o n d  to 
complex-con juga te  values  of W i and Wj. bhder  these  conditions it will follow f r o m  (3.2) that  

Im(n ) {19o l ]W[Z§  

i .e. ,  if 

g (Dpo) § -kv "~o- (Doo) ~ 0 

then n cmmot  be  complex .  

In analogous fashion we have 

l : '  ] W t 2 dz 

(3.3) 

f r o m  (3.3), whence it follows that  if D2#0 _> 0, then Re(n) < 0; while i f  D2~0 < 0 and ID2#01 is fa i r ly  l a rge ,  
then the case  Re (n) > 0 is possible~ 

Assuming i = j  in {3ol), we obtain 

(3~ 

Equation (3.4) al lows a var ia t iona l  pr inc ip le  analogous to the one cons idered  in [10] to be  used to de-  
t e r m i n e  the e igenvalues  n. Let  us find the deviation 5n of the e ignevalue n caused  by a sma l l  deviation 6W, 
which sa t i s f i e s  the boundary conditions.  With an accuracy  of up to quanti t ies  of s e c o n d - o r d e r  s m a l l n e s s  
we shal l  have 

where  

- - ( I I  § I~ + t'~-~n ~ Is)Sn~-- n S t l - - - ~ S t 2 - - + 5 1 3 - i - ( ~ I 4 - ~  5[~, (3.5) 

5I i a re  the cor responding  deviat ions of the in tegra l s  

-2- 6I~ = ~ -  I {~o (D -- k ~) W § 2 (D~o) (D ~ -- k s) DW 
§ ( D ~ )  (1) ~ § k s) W} 5Wdz 

Substituting Eqs. (3.6) into Eq~ (3.5) and ca r ry ing  out s imple  t r an s fo rma t ions ,  we obtain 

(3.6) 

737 



- -  ~ ( D9~) W 2 
n E~ kx~ (D%) W ' +  ~-2 B2~,)W - - ~ -  D ( p o D W )  n k ~ 

i (3.7) -~ ~ -  D [[~o (D ~ - -  k2) DW] -}- ~ D [Dlx o (D 2 -t- k :) W] 

- -  ixo (D ~ - -  k ~) W - -  2 (DlXo) ( D W )  } 6Wdz 

Now using the o r ig ina l  equat ion (1.2) we shal l  have 

( ' )  g I ~ - k ~ - I 3  6n 0 I1 -i- ~- = 

whence it fo l lows that  5n = 0, s ince  the e x p r e s s i o n  in the p a r e n t h e s e s  is not  equal to z e r o  in the gene ra l  
c a se .  

Consequent ly ,  sma l l  devia t ions  of the e igenfunct ion 6W f r o m  its t r u e  value,  which sa t i s fy  the bounda-  
ry  condi t ions ,  c o r r e s p o n d  to the value  of n [de te rmined  f r o m  Eq. (3.4)] with an a c c u r a c y  up to quant i t ies  of 
second  o r d e r  s m a l l n e s s .  

4. Le t  us go on to c o n s i d e r  the p r o b l e m  of the s tabi l i ty  of the i n t e r f ace  (z = 0) between v i scous  con-  
(~) (2) duct ing f luids bounded by sol id  walls  ( - h  , h ), us ing the  va r i a t iona l  p r inc ip le  expounded above. As is 

shown in [11], the appl icat ion of  the va r i a t iona l  p r inc ip le  for  the solut ion of the p r o b l e m  s ta ted  in the ab-  
sence  of a magne t i c  f ie ld  (when the v i s c o s i t i e s  of the f luids a r e  d i f ferent )  is inexpedient .  However ,  in the 
s t a t e m e n t  c o n s i d e r e d  one m a y  l imi t  the  ana lys i s  to the c a s e  when the v i s c o s i t i e s  of  the f luids a r e  ident ica l  
and the fluids di f fer  only in the magni tudes  of the i r  comtuct iv i t ies ;  this may  hold, fo r  example ,  in a nonuni -  
f o r m l y  heated  gas  whose  conduct iv i ty  depends v e r y  s t rong ly  on t e m p e r a t u r e ,  while the  densi ty  and v i s c o s i t y  
v a r y  subs tan t ia l ly  l e s s .  Note tha t  such a s t a t e m e n t  of the p r o b l e m  makes  no s e n s e  in the  absence  of a m a g -  
ne t ic  field. As an a pp rox i m a t e  exp re s s ion  fo r  the  ve loc i ty  pe r tu rba t ion  we shal l  take its wel l -known exac t  
va lue  in the c a s e  of  an ideal  f luid in the absence  of  a magne t ic  f ield:  

Wo) ---- A (e -~  - -  e2~h(l)§ W(2) .... A t --e ~h(1) l -- e -~n(2) (e-~z --  e-~khI~)+~z ) 

Subst i tut ing t he se  e x p r e s s i o n s  into Eq. (3.4) and in tegra t ing ,  we obtain the fol lowing d i s p e r s i o n  r e -  
lat ion sh ips :  

p0 (cth kh (1) § cth kh(~)) n ~ 

2 e 2kh(1) 

(e ~h(l)-  i ) '  
(hO)zo(') -b h(2)% (2)) ] q- 2 k~90 (cth an (1) .-~ t th kh(2. )) } n 

k~ EoB (~0(2) -- ~(~(1)) = 0 k~ 

(4.1) 

A s s u m e  now that  

where  

hO),h<~) -~ oo and the f luids a r e  n o n v i s c o u s ;  then (4.1) takes  the f o r m  

N1 ~ -~-1/2N1 -- K1 = 0 

2 pon 
N1 ~- (6o(1) _~ %(2)) B ~ , K1 -~ 2 PoEo(%(1) (6~ 60(~))~-- 6~ ~ k 

It is not  diff icult  to ve r i fy  the fact  that  in the c a s e  of  ins tabi l i ty  ( EoB(~0 (2) - a0 (1)) > 0) the m o s t  dan-  
g e r o u s  osc i l l a t ions  p ropaga t e  along the magne t i c  field.  Below we ana lyze  p r e c i s e l y  this  c a s e  (i.e., ky = 0) 
th roughout .  

The  dependence  Nl(K ~) is shown fo r  (r0(1) = 0 in Fig .  1. The  c r o s s e s  denote  the  r e s u l t s  of  the exac t  
solut ion of the p r o b l e m  on the bas i s  of  Eq. (2~176 Thus ,  the chosen  approx imat ion  for  the ve loc i ty  p e r t u r -  
bat ion y i e lds  fully s a t i s f a c t o r y  r e s u l t s  when the magne t i c  f ield is taken into account .  In the s t a t emen t  con-  
s i d e r e d  (#0 = cons t )  the approx imat ion  indica ted  evident ly  a l so  y ie lds  good r e s u l t s  when the v i s c o s i t y  is 
c o n s i d e r e d  [11].  
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Le t  us r e t u r n  to Eq~ (4.1) fo r  h (t) = h  (2) = h  and ky = 0 and let  us wr i t e  it in d i m e n s i o n l e s s  f o r m :  

N12 -~ 2 sh2KIhI -b 2 K I  2P N i  - -  K 1 t h K i h  1 = 0 

where  

P = ~0B~ (%(I) ~_ %(2)p hz := 
2 po2Eo 2 (%(~) - -  ~o(1)) ~ ' 

hB 3 (%(I) § %(~)): 

2 poE0 (Zo (~) -- ~0 (1)) 

It  is  not  diff icul t  to  obtain the  a s y m p t o t i c  e x p r e s s i o n s  f o r  the m a x i m u m  growth  r a t e  Nlm of the  s t a b -  
i l i ty as a funct ion of  P. 

F o r  the  c a s e  h 1 -~ :~ we shal l  have 

Nlm- -~ l / 2p  'A for P--->O 

NI~ ~ ~/5 P'/" for P --~ r 

ff hj is  f inite,  then fo r  P -~ 0 we obtain  the p r e v i o u s  e x p r e s s i o n  fo r  Nlm; howeve r ,  if P -~  0% then �9 
Nlm -~ h l /2P .  

The  dependence  NI(K i) fo r  this  c a s e  is d i sp layed  in F ig .  2 for  P = 1~ F igu re  3 shows the dependence  
of  the  m a x i m u m  ins tab i l i ty  g rowth  r a t e  on the p a r a m e t e r  P fo r  v a r i o u s  va lues  of  h I. The  s t ab i l i z ing  ef fec t  
of the  walls  on the s tabi l i ty  of  the i n t e r f ace  between m e d i a  is evident .  

5. A s s u m e  now tha t  the  dens i ty ,  conduct iv i ty ,  and v i s c o s i t y  of  a m e d i u m  which is conf ined  between 
f r e e  s u r f a c e s  spaced  a d i s t ance  d apa r t  a r e  d i s t r ibu ted  l i nea r ly :  

Oo = poo ( i  + l~z),  ~o = ~0. (t + l~A 

739 



Then the solution of the original  equation (1.2) may be written as follows: 

W = A s in~-  ~, where m = i, 2, . . .  

and the dispers ion re la t ionship will have the fo rm 

where 

N~ = 2 d~np~ , K~ dk H~ B~d~oo 4 g ~ a ~  4 F, oBihd~o~ 

The graph of N2(K 2) for  H 2 = 1, ky = 0, G + F = S = 1 is shown in Fig. 4. 

Let  us again consider  the case  of sys tem instabili ty (i.e., S > 0): under these conditions the most  
dangerous osci l la t ions a re  propagated,  as previously ,  along the magnetic field. It is not difficult to show 
that N 2 r eaches  a maximum at m = 1, and t he re fo re  below it is p rec i se ly  this case  which is analyzed. Fig-  
ure  5 shows the dependence of the maximum instabili ty growth r a t e  on the p a r am e te r  S for var ious values 
of the Hartmann number  H. It is evident that as the Hartmann number  inc reases  the sys tem becomes  
stabil ized, although this stabilizing effect  is compara t ive ly  small  and is manifested at values of S which 
a re  not too la rge .  
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