ON RAYLEIGH - TAYLOR INSTABILITY IN MAGNETOHYDRODYNAMICS
IN THE GALVANIC APPROXIMATION

€. P. Zimin and O. A, RKismont

The paper considers the stability of the interface between viscous conducting media in the
presence of a current and a magnetic field for a magnetic Reynolds number much smaller
than unity., In order to obtain the dispersion relationships, a method is used that is based
on the variational principle. It is shown that the method indicated yields good results when
the magnetic field is considered. The dependence of the maximum growth rate of the in-
stability on the defining parameters is presented. The problem of the stability of a fluid
layer situated between solid walls for linearly distributed conductivity and density is like-
wise solved, The stabilizing effect of the Hartmann number on the stability is shown.

A number of papershavebeen devoted to an investigation of stability of the Rayleigh-Taylor type in
magnetohydrodynamics for a finite conductivity of the medium (for example, {1-4]). In the majority of
these papers the stability of the interface between media having different densities and conductivities was
considered in the presence of gravitational and magnetic fields, the external magnetic field being assumed
constant (i.e., in the equilibrium state the currents were assumed equal to zero).

The assumption of a constant magnetic field, which permits analytic solutions ofthe problem to be
obtained in a number of cases, excludes the interesting case of the stability of a current slab, In the gen-
eral case the problem of oscillations in a thin slab having a finite conductivity of the medium turns out to
be very complex [4].

At the same time, in a number of cases which are of practical interest the effect of the magnetic
field introduced by the current flowing in the fluid is relatively small, and the problem of the stability of
a current slab in gravitational and magnetic fields may be solved in the galvanic approximation, Such an
approach was initially proposed in [5], where dispersion relationships were derived for bulk and surface
waves in the absence of viscosity or an external electric field.

In [61the problem of the stability of the interface between two media having different conductivities
was considered with allowance for the viscosity of the medium and the finiteness of the conductivity gra-
dient, However, that paper did not consider the current induced by the perturbed motion of the medium,
although there were not sufficient grounds for this omission; also, at the same time the perturbations of
the electric field intensity were assumed to be nonvanishing, which is not correct in the indicated state-
ment of the problem, In [7} an attempt was made at obtaining the galvanic approximation via the transition
to the limit Ry, — 0 in the final equations for the perturbations: under these conditions the electric field
perturbations automatically dropped out, but the magnetic field perturbations were preserved.

Finally in [8] only dispersion relationships derived for Ry, <« 1 for two particular cases were given:
in the absence of viscosity of the medium and for a small interaction parameter. Moreover, in that paper
the magnetic field perturbations were considered anew. The indicated factors prompt another consideration
of this problem.

1. Let us consider the stability of an infinite plane slab of incompressible, viscous, and conducting
fluid situated in contact either with analogous slabs characterized by other values of density, viscosity, and
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conductivity or with walls, A gravitational field having a constant acceleration g(0, 0, — g) is applied nor-
mally fo the unperturbed boundary. A uniform magnetic field B is directed along the x axis, and an elec-
tric field E is directed along the y axis. Here and henceforth-the subscript 0 denotes the parameters cor-
responding to the unperturbed equilibrium state,

The original system of equations has the following form in the generally accepted notation:

0% (V) V= — Vp+ ¥ (uVV) + (V) (VV) + pg + X B

. (1.1)
div¥=0, j=6(E+VXB), rotE=0, divij=0

If diffusion is neglected, then one may write the eguation
3
B+ (VW)p=0

for the density.

Assuming the conductivity and viscosity to depend only on density, we obtain the following equations:
& )
=+ VVe=0, X4+ (VV)p=0

The equilibrium state for which V= 0 and the parameters py, oy and p, are functions of only one co-
ordinate z is defermined by the equation

d
_dz;g = — pof§ — Gol5oB

In order to investigate the stability of such a state, we introduce small perturbations of all the param-
eters in the form f(z) exp (iky + iky + nt).

After linearizing the original system (1.1), we may reduce it to one equation for the perturbation of
the velocity component along the z axis:

1 ,
n[pW — D (0oDW) | + 5 coB*W - - D [y (D* — ) DW]
+ 2 D [Diin (D* + 1) W] — o (D* — k%) W — 2 DpeDW 1.2)
1 ky 2 "
-4 (gDpo + %—EDBD%) W=0

Here k2 =ky® + kyz, D =d/dz.

This equation must be supplemented by the boundary conditions which have the same form as they do
in the absence of the magnetic field [10], since the presence of the latter did not increase the order of the
equation. Thus, we have either W = DW =0 on a solid boundary or at infinity (if an unbounded medium is
considered), or W = D’*W = 0 on a free surface; we likewise have continuity of W, DW, ,(D? + k%)W and

i ‘ o
Lo — L (pr— fﬁ)] DW + Tp‘ R DW + % (8k%py + k,2EyBsg) W

t

on the interface between slabs,

2. Let us go on to consider the problem of the stability of the interface between two semiinfinite non-
viscous media with constant densities and conductivities in gravitational and magnetic fields. From Eq.
(1.2} we easily obtain the following result with allowance for the boundary conditions at infinity

W(i) = Ceﬁxz’ W(B) — Ce'azz

where

2 k2 32{?0(1)
“Pom

i

+ £, Re(xi)>0: i=1,2
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Using the conditions for the continuity of the velocity and pressure on the interface between media,
we obtain the following conversion relationship:

1) Yy
nt [90(1) ("_x;%’_?_%(_ + kz) - Po® ( knB Go( ) i kz) ]
o

= k% (0o® — poW) + k2B B (64 — 6,(0)

(2.1)

In the case when the conductivity of one of the media is equal to zero (00(1) = 0) Eq. (2.1) may be re-
duced to anequation of fourth degree in n:

L‘f_ 3250(2)9 ) nd — 2[g (Po(z) - Po(l)) B 4 kK 350(2)] ) @ nt
K g 02— g (22 k (p W _ o @32

k2
e [ 8 (u — i) -5 EoBg® | =0

nt —

(2.2)

For po(i) = 0 with Ey = 0 this equation can be reduced to the equations derived in [5] in the absence of
a magnetic field component along the z axis,

Thus, even a comparatively simple problem leads to the necessity of its numerical solution. There-
fore, approximate methods deserve attention which allow a fairly simple solution of the problem stated in
cases which are more general than the one just considered in the sense of boundary conditions and the in-
itial distribution of the unperturbed quantities.

3. As far back as 1883, in [9] the variational principle was used as the basis for proposing an effi-
cient method of solving problems of the stability of an ideal fluid, In [10] this method was generalized for
tha case of viscous fluids, Below, the method indicated is generalized for the case of conducting liguids
for Ry, « 1.

Let us return to Eq. (1.2). Assume that the eigenvalue n; corresponds to the eigenfunction W;, while
the eigenvalue n; corresponds to the eigenfunction W;. Then, multiplying Eq. (1.2), which has been written
for the case i by W and integrating within the limits of the flow region considered, we shall have the fol-
lowing equation after integrating the individual terms by parts and considering the boundary conditions:

—ny Q.Oo (WW; + k‘z (DWW ) (DW 1dz -+ S(Dpo)W Widz
2 .
t o B BB (Do) Wi dz = %5 B o, W s (3.1)
- 1
+ Sm [WW Wi+ 2(DW) (DW;) + 55 (DW ) (D*W)) ]dz o+ S(szc) W,Widz

Here and henceforth the integration method, which coincides with the boundaries of the flow region,
is dropped.

Now, replacing the subscript i by j and substracting Eq. (3.1) from the equation obtained in this
fashion, we shall have

%
nin; iz

1 ke
(ny — ) { (oo (Wit 4 5 OW) (0W)) Jdz + L= (Do) Waw g + 20 2 (oW iWidz} =0 3.2)
Writing (3.1) in the form
¢  (Doo) WaW sz + 2 o (Dso) W 2

= 12§ 00 [W; - (DW:) (DW)) |z + ni 5 B2 ool W s

o [BWaW, + 2(DW0) (DW)) + 5 (DWW (DW )|z

+ (Do) Wiz
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and performing analogous operations, we find

( mn,)ﬂpo[w Wi+ - (DW)) <DW,>]dz+ AR A
+ o [BWH ;4 2(DW) (DW)) + 5 (DW ) (DW) a2 (3.3)
4 S(D?uo) WWdz =0
Let us now assume that ny and n; are complex-conjugate quantities; then they will correspond to
complex-conjugate values of W; and Wj. Under these conditions it will follow from (3.2} that
2 —
Im(n){gpo[]W[z - ‘DW[Z}dz + nPS[g(Dpo) + & EOB(DGO ] LA dz} 0

i.e., if
g (Do) —f- EOB (Dao) >0
then n cannot be complex,
In analogous fashion we have

2Re(n)Spo [We+ 4 | DW [ |dz = —32 SG”W\
—\wo[B1W P 20w P+ 7$2—|D’W[*sz~S(Dgpo)|W[“dz

from (3.3), whence it follows that if D%, = 0, then Re(n) < 0; while if D2y < 0 and |D%u,] is fairly large,
then the case Re (n) > 0 is possible,

Assuming i =j in (3.1}, we obtain
n oo Wit g (OW)]dz — £ (Dpo) Wil

EB ky
B 5\ (Do) Wiz =

(3.4)
— B kx gcowﬂdz - R{”ﬂ [/‘c‘iW2 + 2(DW) + 73;(1)2!4/)2].4. (Do) Wz}dz

Equation (3.4) allows a variational principle analogous to the one considered in [10] to be used to de-
termine the eigenvalues n. Let us find the deviation én of the eignevalue n caused by a small deviation 6W,
which satisfies the boundary conditions, With an accuracy of up to quantities of second-order smallness
we shall have

— (It & Lot o I on = L, — 81, — b0 61, + 81 (3.5)

where )
= Spo [I/Vz e e (Dw/) szv, Iy = B (Doo) Widz

k%
7: = {{po [/&Wz + 2(DW) + 5 (00 |+ (Do) W2 dz

k N
Iy= S(Dao) Wedz, I, = 25 s Wiz

61i are the corresponding deviations of the integrals
S8l = S[ T — D(pODW)]aWdz, 81, = S(Dpo) WoWdz
i 1 [ -
+80s= "5 EB (Do) Wowdz, oI, = 5 B {awowaz 5.6)
5 6Is= %g{po (D* — k¥ W -+ 2 (Do) (D* — k%) DW
(D) (D + k) W} oWz

Substituting Egs, (3.6) into Eq, (3.5) and carrying out simple transformations, we obtain
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1 1
—g (Lt &L 5 hn= (oo — £ Doy w
n E,B k2
=7 DeeDW) ===

- D (o (D* — ) DW] + - D [Dag (D - &%) W]
— B (D* — k) W — 2 (Dpo) (DW) }BWdz

(Dag) W' %2 Bio,w
(3.7)

Now using the original equation (1.2) we shall have
(11t &Lt o5 Is)on=0

whence it follows that 6n = 0, since the expression in the parenthesesis not equal to zero in the general
case,

Consequently, small deviations of the eigenfunction 6W from its true value, which satisfy the bounda~-
ry conditions, correspond to the value of n [determined from Eq. (3.4)] with an accuracy up to quantities of
second order smallness,

4, Let us go on to consider the problem of the stability of the interface {z = 0) between viscous con-
ducting fiuids bounded by solid walls ~n(t), n)), using the variational principle expounded above. As is
shown in [11], the application of the variational principle for the solution of the problem stated in the ab-
sence of a magnetic field (when the viscosities of the fluids are different) is inexpedient, However, in the
statement considered one may limit the analysis to the case when the viscosities of the fluids are identical
and the fluids differ only in the magnitudes of their conductivities; this may hold, for example, in a nonuni-
formly heated gas whose conductivity depends very strongly on temperature, while the density and viscosity
vary substantially less, Note that such a statement of the problem makes no sense in the absence of a mag-
netic field. As an approximate expression for the velocity perturbation we shall take its well-known exact
value in the case of an ideal fluid in the absence of a magnetic field:

{1 — ezkh(l)

W = A (e-hz — g2kR(1)EzY W@ == 4 kz e_gkh(Z)‘\"kZ)

1— e—zzm(i) (e

Substituting these expressions into Eg. (3.4) and integrating, we obtain the following dispersion re-
lationships:
00 (oth KA 4 cth kh®) n2 4 {’”7 B [ik (5o elh kRO 4 6,® cth khe)

9 ezkh(l

)
— (—_—ezkh(”__ ™ (AVs® - h(2)5,(2)) ] + 2k, (cth kR + cth kh®) } n (4.1)

k.2
e FoB (63 — 6e0) = 0

Assume now that A A® — oo and the fluids are nonviscous; then (4.1) takes the form
N +Y,N, — Ky =0
where

2pn _ 2p,E, (50(2) — o) k

Nys—= —— =
1 G 45,2y B2’ 1 (6, + 6,22 B2

It is not difficult to verify the fact that in the case of instability (E,B(c,?) — 00(1)) > 0) the most dan-
gerous oscillations propagate along the magnetic field. Below we analyze precisely this case (i.e., ky = 0)
throughout.

The dependence NI(KI) is shown for 00(1) =0 in Fig. 1. The crosses denote the results of the exact
solution of the problem on the basis of Eq. (2.2). Thus, the chosen approximation for the velocity pertur-
bation yields fully satisfactory results when the magnetic field is taken into account, In the statement con-
sidered (u, = const) the approximation indicated evidently also yields good results when the viscosity is
considered [11].
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Let us return to Eq. (4.1) for nt) =h@ =y and ky = 0 and let us write it in dimensionless form:
I
N+ (*%‘“gﬁ‘z% +2KAP) N, — Ky th Ky =0

where

P = BB (50(1) + 50(2))3 __ kB (50(1) + 5 VP

T 202 (o — o T T 2 0ok (3 — o)

It is not difficult to obtain the asymptotic expressions for the maximum growth rate Ny of the stab-
ility as a function of P,

For the case h, -> o we shall have

Nyp—>Ys Pt for P-—0

‘Nlm — 2{'5 P%' for P — OO

If h, is finite, then for P — 0 we obtain the previous expression for Nyy,; however, if P— <, then -

The dependence N,{(K,) for this case is displayed in Fig, 2 for P =1, Figure 2 shows the dependence
of the maximum instability growth rate on the parameter P for various values of hy. The stabilizing effect
of the walls on the stability of the interface between media is evident,

5. Assume now that the density, conductivity, and viscosity of 2 medium which is confined between
free surfaces spaced a distance d apart are distributed linearly:

00 = Poo (1 +B42), 64 = 04 (1 + B2
Bo = poo (1 + B32), (IBd]l << 1)
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Then the solution of the original equation (1.2) may be written as follows:

W=Asin"%t—z,wherem=1,2,...

and the dispersion relationship will have the form

r 2 kol H? k2 Ko
N+ 2[0n + K + 5 i) Ve =[G+ 5 Pl = 0

where

. 2dnpe dk o B 4 ghdipu 4 EyBRadtons
N2= oo ] Kz*-‘;{‘, H—W’ G= 3"‘900’ L] F= nqu'z

The graph of N,(K,) for H? =1, k, =0, G +F =S =1 is shown in Fig. 4.

Let us again congider the case of system instability (i.e., S » 0): under these conditions the most
dangerous oscillations are propagated, as previously, along the magnetic field. It is not difficult to show
that N, reaches a maximum at m = 1, and therefore below it is precisely this case which is analyzed. Fig-
ure 5 shows the dependence of the maximum instability growth rate on the parameter S for various values
of the Hartmann number H. It is evident that as the Hartmann number increases the system becomes
stabilized, although this stabilizing effect is comparatively small and is manifested at values of 8 which
are not too large.
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